

Engineering project and research on:-**Power OPEX Saving Expert Project**

Prepared by: Soran Hama Ghafor Ahmed Specialty: - Mechanical Engineer

Membership ID: - 2954

CDC Hybrid Solution

ur OPEX Saving Expert

Indexes :-

- **1-CDC Hybrid Solution Energy in brief**
- 2-CDC Hybrid Power Systems Report Objectives
- **3-Define the thrust of a new program:**
- 4-Conclusion
- 5-Huawei Hybrid Solution Introduction
- **6-Special designed ESS for different scenarios**
- 7-Huawei Hybrid Solution trail test & results
- 8-Case Study (consumption Cause high OPEX)
- **9-Feature and Benefits**
- **10-Proposed Hybrid solution**

eferences :-

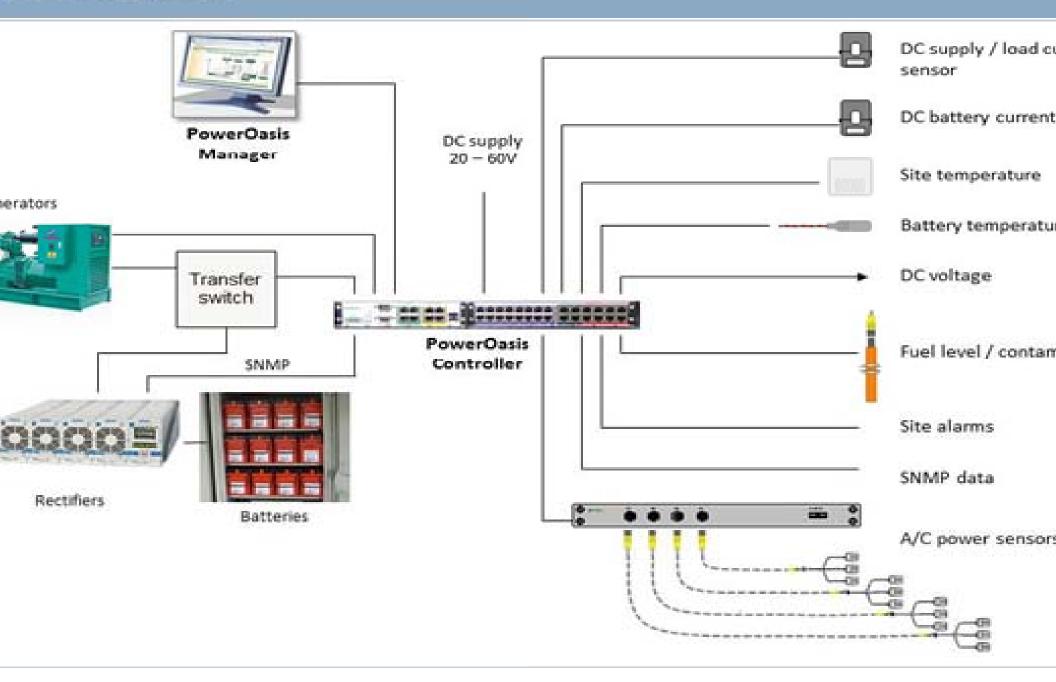
Huawei Technologies Co. LTD Asiacell site & communication equipment's

CDC Hybrid in Brief

lecoms operators seek the next billion subscribers over the next five s, their focus is shifting to developing markets from which, according ramid Research, 90% of new subscribers will come.

nding the network in these markets is a challenge; there is no ricity grid infrastructure or in some cases connection to an liable grid. For some wireless operators 70% of the trouble tickets ower related and often the only option is to send an engineer to site. n the power goes it takes time to resolve and valuable network nue is lost. common option is to run a diesel generator 24/7 and live with the problems of I supply in remote areas, as well as theft and network downtime due to power ges. In addition, excessive generator wear and tear due to sub-optimal runtime (e.g. a 17kVA generator powering a 2kW telecoms load) results in increased cing and decreased operating life – meaning that the generator needs to be level frequently.

problems associated with blackouts or brownouts in a network with an liable grid present another set of challenges. The common approach is to use a ry bank with a fuel cell or a diesel generator for power back-up. However, wit anagement or control platform the performance is improved but not optimize erformance or equipment lifetime

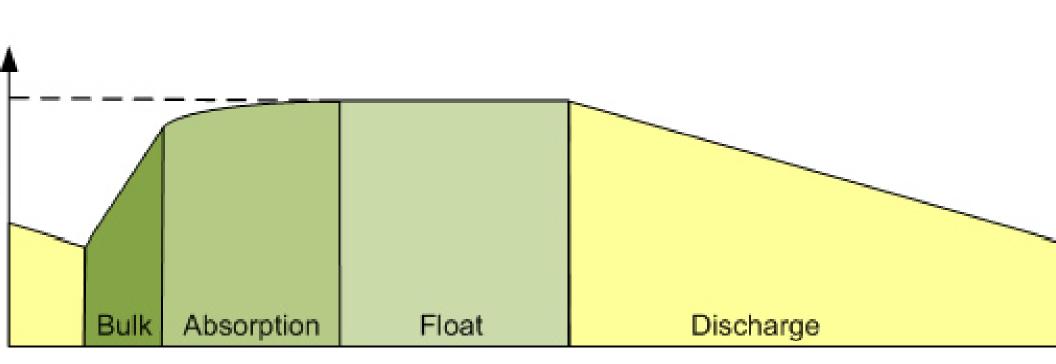

CDC Hybrid Power Systems Report Objectives

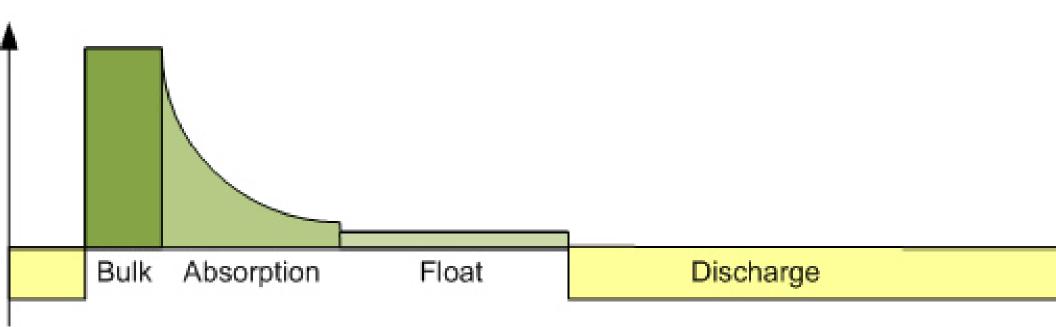
ybrid Power Solution is one that takes a power source, such as a diesel generate ombines that with an energy storage system, such as a battery bank. The batter neets the day-to-day site power load and when its state of charge reaches a ured threshold, then the controller starts the generator and the site is powered ator which also recharges the batteries. The generator is running under near 'f conditions and therefore is in optimum efficiency mode.

ically, the generator will run for 4-6 hours to charge the battery bank under furst opposed to running 24 hours a day at 30% of its capacity just keeping the site ed – this results in up to 50% diesel saving. The overall result is reduced fuel of equipment service life and fewer refueling and maintenance site visits.

following diagram illustrates the key components of a Generator-Battery Hyb solution.

Diesel Hybrid


PowerOasis Generator-Battery Hybrid Power solution measures all key senso to optimize system performance. The data is stored locally and then uploaded ral PowerOasis Manager in the networks operations Centre. The result is d fuel costs, longer equipment service life and fewer refueling and maintenanc its.


purpose of CDC system to provide longer backup in case of grid source and tors failure (manually or automatically), to reduce the OPEX of Power source inimization of fuel consumption. By using Deep cycle batteries for longer p,

ase of lonely generator source available, during the fully charging of batteries AS will be automatically shut off and on 60% DOD to will return to duty atically. In this way DG OPEX (fuel consumption cost and operational with ative maintenances) will be minimized.

ery Profiling :-

cycle batteries are used to store energy between generator runs and the power to the telecoms loads. Battery life is dramatically influence the of charge management, which must follow the manufacturer's ang profile if battery life is to be maximized and warranties adhered agrams below illustrate one of the many programmable battery ang profiles implemented by PowerOasis Smart Hub Controller. The art shows the battery state of charge and the bottom chart shows the ponding battery current.

ing the bulk charge phase (also described as constant current or UI phase) battery charge acceptance is high and the power system is in current limit, er delivery to the battery during this phase is optimal and limited only by bower source. In the bulk charge phase approximately 80 – 90% of battery ege can be returned.

absorption charge phase returns the battery to full state of charge, in this se the battery voltage has reached that of the power system and the charge ent reduces. This constant voltage stage of the cycle is less efficient in terms ower return but necessary to fully recharge a battery.

float charge is required for long term maintenance of batteries on standby ication, the charge voltage is reduced and battery current at low residual s. The float charge is only required where commercial power is available for nded periods. ry state of charge is monitored using highly accurate patent pending coulomb ing algorithms to avoid battery damage from undercharging or over-charging tate of charge, combined with high and low voltage disconnect thresholds, are by PowerOasis Smart Hub Controller to control rectifiers, which govern the r used to charge the batteries.

rOasis tests and certify the performance of each battery system and can fore recommend solutions based on the performance and cost criteria of the oms operator.PowerOasis has undertaken extensive testing with EnerSys and mends its Eon battery for telecoms applications. EnerSys will provide a highe warranty when their batteries are controlled by a PowerOasis system. rOasis has undertaken extensive testing with SAFT and recommends its on Lithium-ion battery for long term telecom applications.

- educe or eliminate noise of generators and emission Problem.
- event/reduce power trespassing since the produced power is DC only
- creasing network from 30% to100% (21hours autonomy plus 8 hours backup crease installation contractor (the solution is plug and play)
- uipped with Solar & Wind power to increase saving
- mote Management for all equipment's
- ompile a set of activities that may tap into existing Technology programs to in the gaps"
- oordinate but not overlap with technology programs
- nulate innovative thinking that leads to creative business ortunities
- courage cross-programmatic interactions and benefits

clusion

owerOasis we take a systematic approach to dramatically reduce power OPEX ng solutions that optimize the Return on Investment (ROI) for the Telecoms or. PowerOasis undertake a six-stage Services Model to identify those base sta ith compelling power reduction opportunities.

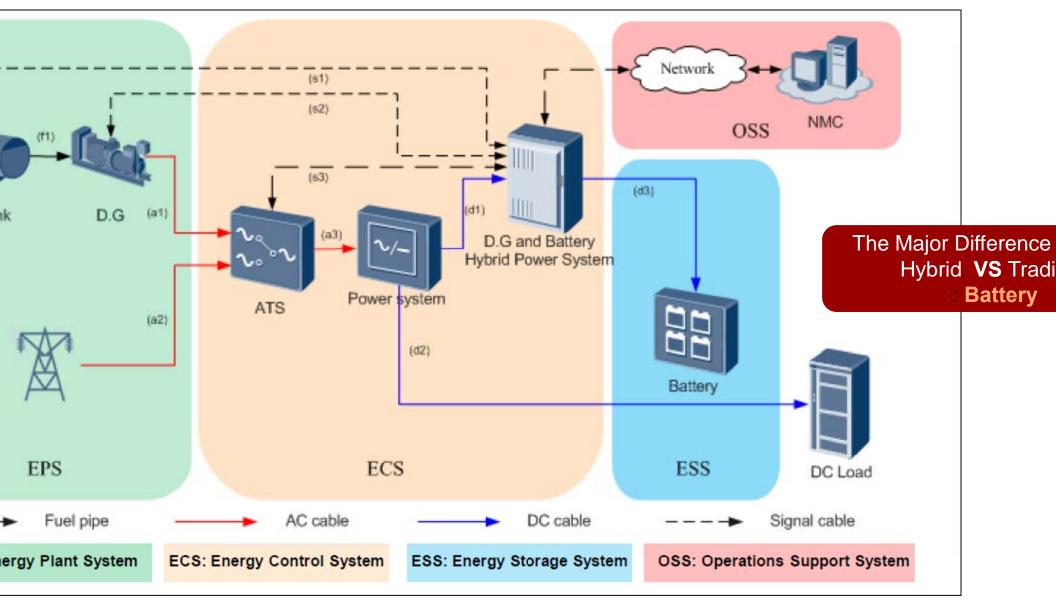
Hybrid power systems can offer solutions and value to Customers that indivi logies cannot match (communications and network field). The approach is cen viding a Total Cost of Ownership (TCO) model comparing new alternatives w g (benchmarked) data. In addition, the approach enables the Telecoms Operat e CAPEX investment with OPEX savings. In some cases, it is useful to deploy ted solution to rapidly gain OPEX savings and then to re-invest these saving to le the site to get additional OPEX saving. brids offer market entry strategies for technologies that cannot currently bete with the lowest-cost traditional Options.

me renewable CDC Hybrid power systems are commercially available today a I be outsourced to our region for further study & instant utilization especially ural areas.

tiative with an emphasis on distributed applications that currently existing in llel to the main technology focus & Design.

r minimum coherence with the new technology focus, it could be a considerabl enge to study it within university courses for new engineering generation.

nergy Worldwide Applications.


- 52,000+ sites with hybrid power solution
- 60,000+ Mini-shelter
- **700,000+** power system
- 80+ countries, 130+ operators

130+ service branches spread all over the world1100+ professional partners7X24 hours service

Localized service close to customers

DC Hybrid Power Solution

Special Designed ESS for Different Scenarios

CB Energy Storage System Deep Cycle Battery

features:

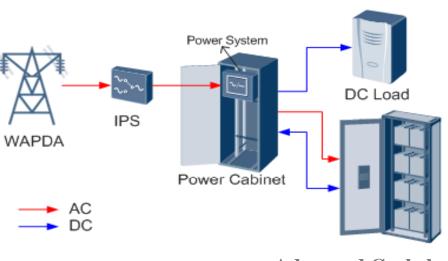
- g cycle life and high current arging performance
- Cycle life : **2000 times @ 60% DOD, 25°**C
- Max. working temperature 35°C.

FCB Energy Storage System Fast Charge Battery

Key features:

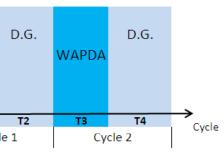
Higher current charging performance

- Maximum charging current up to 0.3C
- Shorten **50%** charging time
- Cycle life : 1500 times @ 40% DOD, 25°C;
- Fully recovered to 100% capacity
- Battery efficiency more than 90%

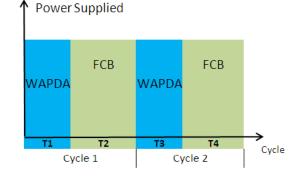

ACB Energy Storage Syste Advanced Cycle Battery

Key features:

- Longer cycle life, High density & save space
- Cycle life : 3500 times @ 85% E 35°C;
- High energy efficiency is more the 95%;
- Save 1/2 weight & 1/3 volume

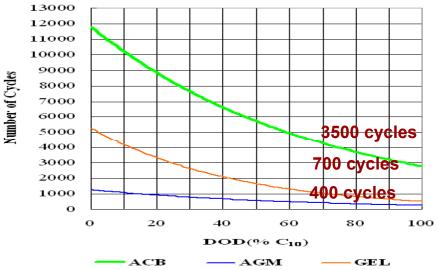

B Hybrid Solution for site

OA supply >=6 Hrs

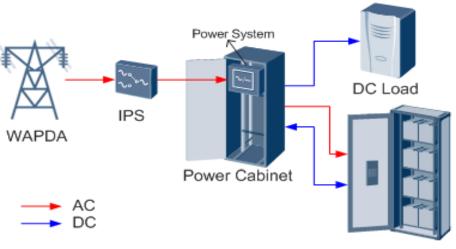


is: WAPDA + D.G.

Advanced Cycle battery To be: WAPDA + ACB

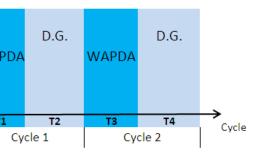

Benefits:

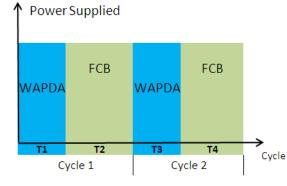
• Maximize utilization of WAPDA, Only use WAPDA


ACB, AGM Battery used for Backup;

• Remove D.G. and Zero Fuel & Maintenance cost;

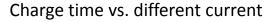
Cycle life of AGM/GEL/ACB 35°C:

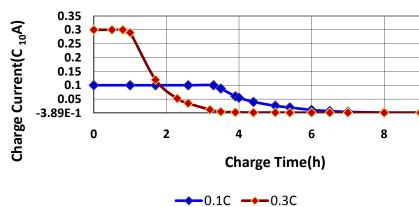

Hybrid Solution for city site DA supply >=12 Hrs

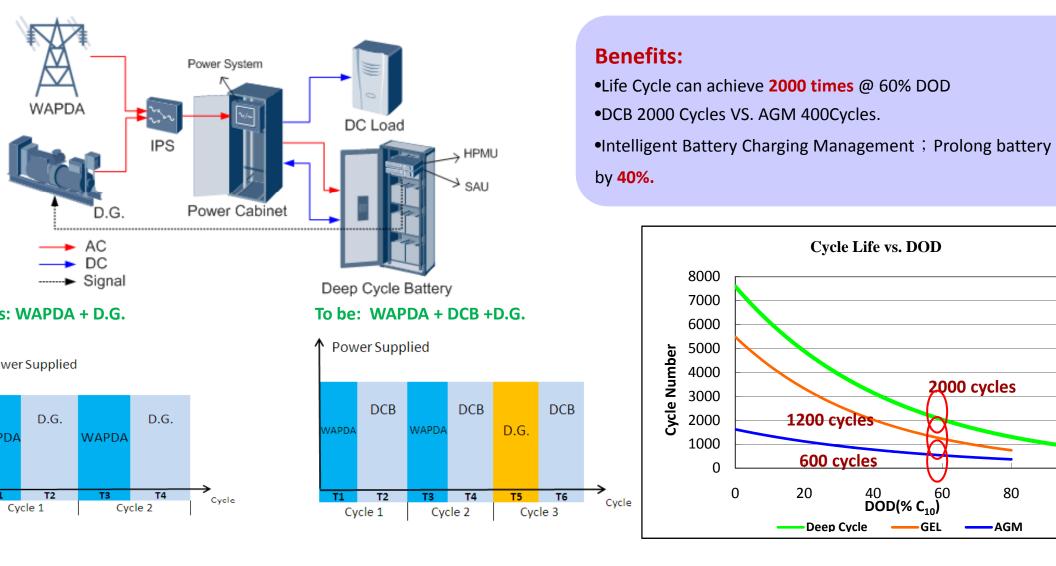

Fast Charge Battery

As is: WAPDA + D.G.

ower Supplied




To be: WAPDA + FCB

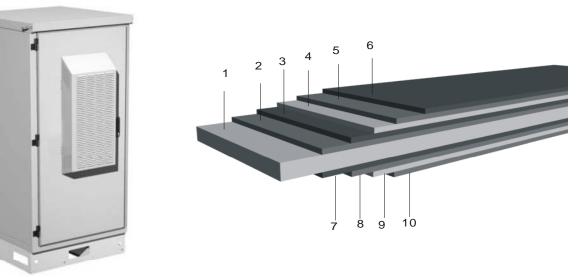

Benefits:

- Maximize utilization of WAPDA, Only use WAPDA and
- Accept 0.3C fast charge, Battery charging time savin increase charging current;
- Remove D.G. and Zero Fuel & Maintenance cost;

B Hybrid Solution for Suburban and Ruel site DA supply < 12 Hrs

Dual Power Solution-ECS

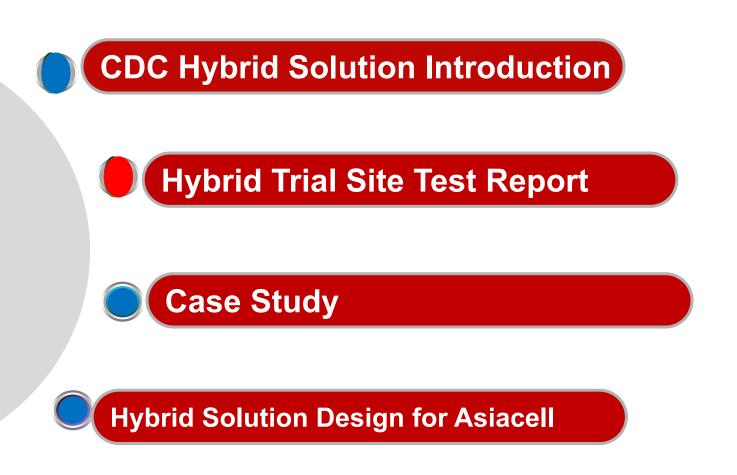
ures:


- ecial designed DC power system
- Support high battery charge current, which can reach up to 0.3C
- AC input source automatic adaption technology, which can adjust and mit the charge current base on the capacity of AC input to avoid suddenly shut down the AC input source (Grid/D.G.)
- Battery big current charge soft start technology and charge current automatic adjustment technology less battery temperature raise
- emote monitoring method by GPRS \ IP and in-band
- 13U standard 19inch spare space offered

	Items		Parameter
		Full Load current	200A/50A
			Input: AC220V/380V
	Capacity	Rated Voltage	176Vac ~ 290Vac , 100% ou
		Nateu voltage	90Vac ~ 175Vac , degraded
			Rated Output: 53.5V DC
	Ambient	Temperature	-20°C~+50°C
		AC input	63A/3P*1 (MCCB)
	ACDB	SPD	Class B
		Battery connection	160A*2 (Fuse)
			63A´4(Fuses)
	DCDB	LLVD	32A*2 +16A*2 (MCCB, can
		BLVD	63A*2 (Fuses)
		BLVD	32A*2+10A*2 (MCCB)
		SPD	10kA/15kA
	Communications	Dry contact, RS232/485	
	Size/Weight	765*700*1550mm(W*D*H	
			≤150kg (Without Battery)
	Cooling mode		Free cooling, Heat exchange

Dual Power Solution-DC Air-Conditioner Battery Cabinet

DC air-conditioner battery cabinet



Base Iterial teel)	2、Zinc coating	3、Surface treatment film	4、Prime painting	5∖ Surface painting
otection n	7、Zinc coating	8、Surface treatment film	9、Prime painting	10、Back painting

- Multiple films which can isolate the sun radi
- Cabinet support battery installation 400/650 bank or 200AH*2bank
- High efficiency cooling system, suitable for h temperature scenario using

Items	Parameter
Cooling unit	DC air-conditioner
Rating supply voltage	DC 48V
Cooling capacity	1000W
Rated input power	300w
Working ambient temperature	-15 \sim +55 deg
Dimension (L*D*H)	905*1085*2155 (mm)
Weight	250kg
Panel board	Sandwich panel
Shelter structure	Assembled

erview of Hybrid Power Trial Site

	Original	Hybrid
BTS	BTS3012AE	BTS3012AE
DC average consumption	1600W	1600W
Battery Cabinet	IBBS (TEC)	Mini-shelter (Air-con)
Battery Capacity / Type	2*150Ah / AGM	2*420Ah / DCB
Rectifier	90A	90A

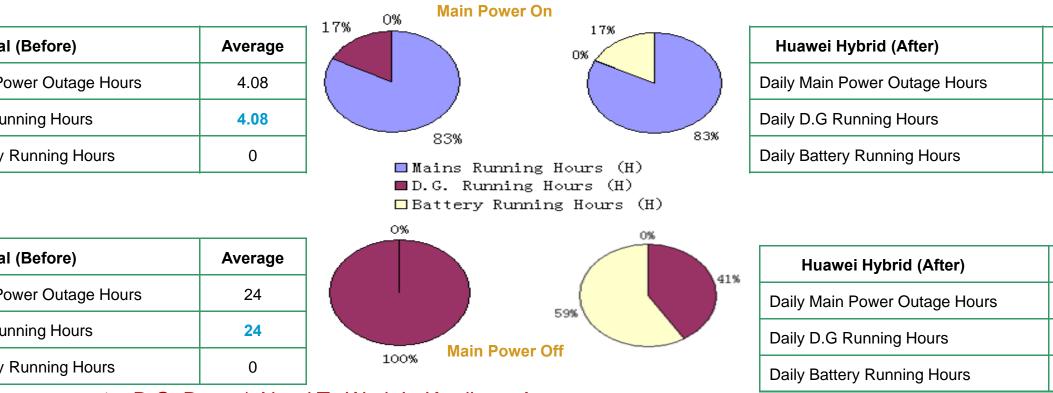
erview of Hybrid Power Trial Site

	Original	Hybrid
BTS	BTS3900A	BTS3900A
DC average consumption	1300W	1300W
Battery Cabinet	IBBS (TEC)	Mini-shelter (Air-con)
Battery Capacity / Type	2*150Ah / AGM	1*600Ah / DCB
Rectifier	90A	90A

Method of Test Operation

Suly--CHWAR BAKH SITE BTS3900A

Du	ration	Status			Target			
2011-06-10		Installation Finished			Test Temperature, Alarm and Operating			
2011-07-07—201	1-07-17	Main Power OFF (By Manual)			Test Battery Performance			
2011-07-18—Pre	sent	Main Power ON			Test Actual Performance & Reliability			
cell-BTS3900A r bakh site	Mains Running Hours	D.G. Running Hours	Battery Running Hours		attery Total harge Times	Battery Total Discharge Times	Fuel Cons Overall (I	
0707~0717 lain Power OFF	0	118	170.6		19	20	27	
0719~0803 1ain Power ON	329	0	55		16	15	C	

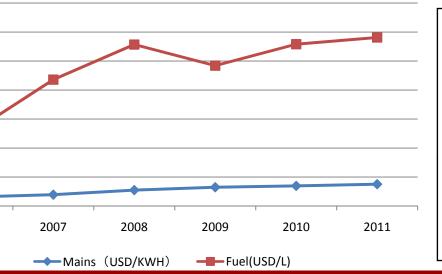

≻Average Charge time: 6.16 H

≻Average Discharge time: 8.53 H

Average Cycle time per day : 1.7 (Life Time \geq 3 Years)

≻Fuel Consumption per Hour : 2.31 L

Hybrid Solution Test Result

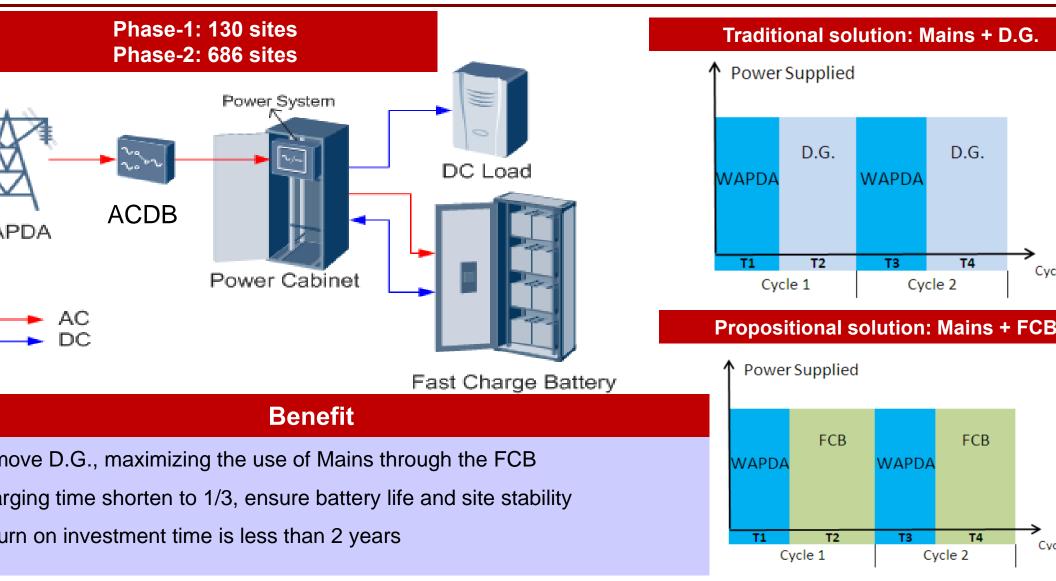

D.G. Doesn't Need To Work In Kurdistan Area
"0" CO2 "0" Generator Maintenance "0" Fuel & Refueling

D.G. Running Time Reduced 59% When No Main Power Available 59% Running time reduced "1+1" Diesel Generator reduced to "1+0"

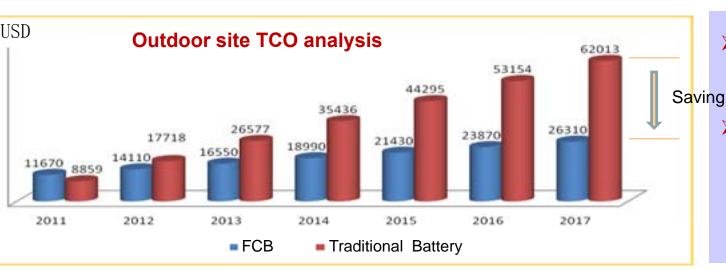
Ilenge :Consumption Cause High OPEX

of Mains and fuel in Pakistan (USD)

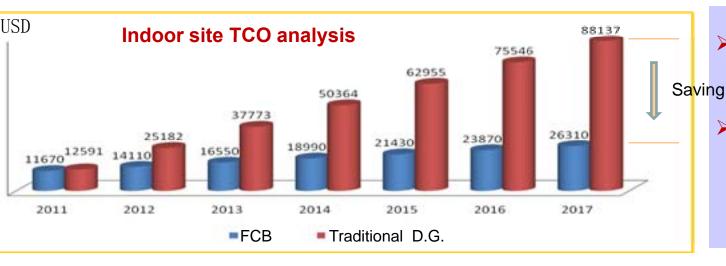
Mains Outage in Pakistan (hours / day)


Provinc	Punjab		Sindh		Baluchistan		N	
е	town	village	town	village	town	villag e	town	
Mains outage (hours/ day)	5.4	8.4	5.8	8.6	5.9	8.4	5.9	

INFORMATION FORM WAP

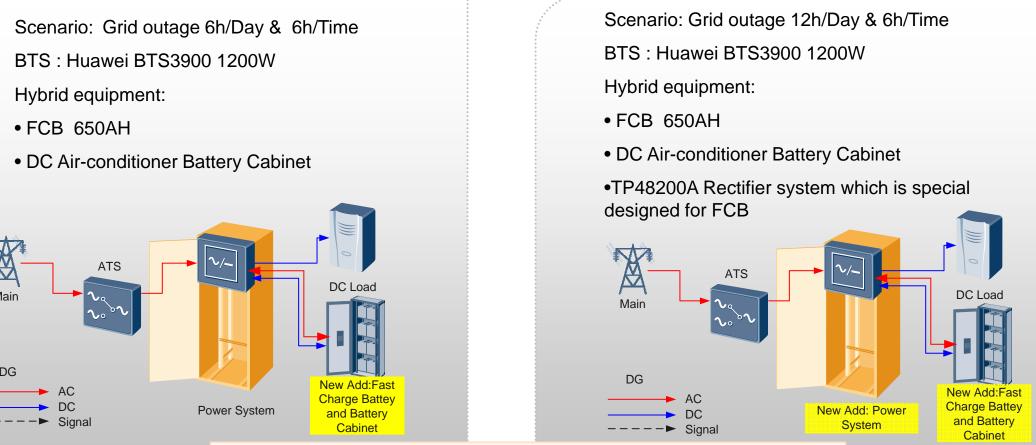

Average energy consumption cost per site of entire network (USD/year)

Operator Mobilink		Telenor	Ufone	Cmpak	Warid	
Mains supply	5,833	3,805	3,623	3,707	3,849	
Diesel oil	8,750	5,707	5,434	5,561	8,398	
Total	14,583	9,512	9,057	9,268	12,247	
Information form Operator Budget(2010); Operator Annual Report (2009); Huawei Analysis (20						
y consumption accounts for more than 60% in OPEX which is main challenge to operat						


B solution-Urban Area

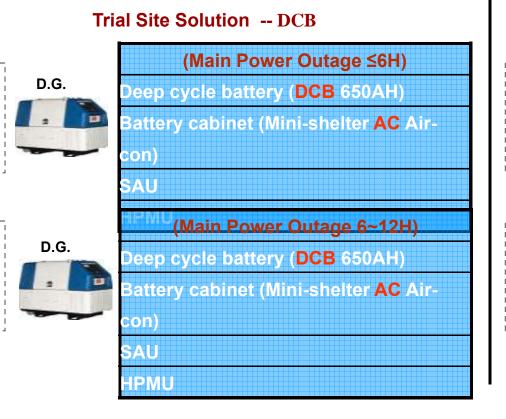
B : Reduce TCO Greatly

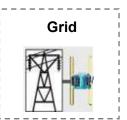
- Rebuild outdoor sites, a payback within 17 months
- Single site annual save 5100USE 2500 outdoor sites rebuild with FCB, The average annual total sa more than 12 million USD.


- Rebuild indoor site, a payback per g 11 months
- Single site annual save 8832USD outdoor sites rebuild with FCB, Th annual total savings more than 4.4 USD

EX Analysis

REA	SCALE	INDOOR SITES	OUTDOOR	INDOOR SITES	status	OPEX Reduce(U	
	SCALE	INDOOR SITES	SITES	Proportion	Status		
JK	241	25	216	10%	conformed	1,343,200	
n area	1150	494	656	43%	planning	7,610,600	
e area	2550	892	1658	35%	planning	16,133,30	
h area	1620	615	1005	38%	planning	10,425,75	
otal	5561	1521	3040	33%	planning	35,512,85	


JK has completed distributed base station rebuild + removed D.G., the D.G.number from 241 down to 17 after the whole network rebuilding, the annual OPEX savings will reach 35.51 million U.S. dollars.


eature and Benefit – Solution Introduce

- Remove the D.G, "0"Fuel consumption and D.G maintenance
- •The battery can supply 8.32 hours @ 40% DOD and total 20.8 hours @ 100% DOD to guarantee the safety of site power
- High efficiency cooling system to prolong battery life
- Both Support Indoor and Outdoor Modification

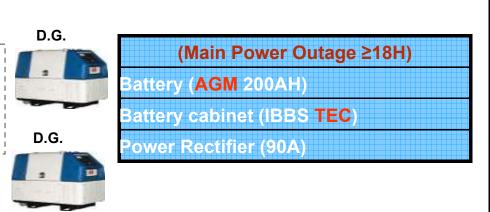
awei Optimized Solution Design For North-- FCB

Grid	

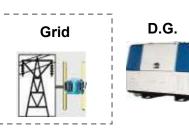
Optimizes Solution – FCB (Dual Power)

	(Ma	ain Po	wer	Out	age	≤6H)		
Сеер	cycle	batte	ry (F	СВ	600 <i>4</i>	AH)			
Batte	ry cab	inet (Mini	-she	lter	DC	Air-c	on	

CA


CA

	(Main Power Outage 6~12H)
De	eep cycle battery (FCB 600AH)
Ba	attery cabinet (Mini-shelter DC Air-con)
Po	ower Rectifier (TP48200A)


ling: DC Air-con Cabinet more energy saving than AC Air-con

- ery : FCB Battery more suitable and less Capex than DCB for Good Main power situation
 - : . Under Main Power + FCB Battery Dual Power Solution , D.G can be moved
- trol: SAU can be saved according to no D.G on site
- nitor: NetEco software and HPMU unit are optional items

awei Hybrid Solution Design For South--DCB

Traditional Solution -- 1+1 D.G

Hybrid Solution – DCB with only 1+ 0 D.G

(Main Power Outage 6~12H Deep cycle battery (DCB 600AH) Battery cabinet (Mini-shelter DC Air Power Rectifier (TP48200A) SAU

ling: DC Air-con Cabinet more suitable for Battery lifetime

- ery : DCB Battery support more frequent Charge & Discharge and also longer backup time
 - than AGM for Poor Main power situation
 - : . Under Existing 1+1 D.G Solution , One D.G can be removed
- trol: SAU can be saved according to no D.G on site
- nitor: NetEco software and HPMU unit are optional items

oposed Hybrid Solution TCO of 5 years •ROI 2.4 Years D.G 1+0 (Main Power Outage ≤6H) Quantity **Price (USD)** 12384 ep cycle battery (FCB 650AH) 6600 1 8256 10200 10200 10200 4128 ttery cabinet (Mini-shelter DC Air-3600 1 0 n) CAPEX TCO1 TCO2 TCO3 10200 tal Price TCO of 5 years •ROI 2 Years .G 1+0 (Main Power Outage 6~12H) Quantity **Price (USD)** ep cycle battery (FCB 650AH) 6600 1 ttery cabinet (Mini-shelter DC Air-3600 1 n) 16118056 1524 15200 wer Rectifier (TP48200A) 15200 1 5000 15200 tal Price CAPEX TCO1 TCO3 TCO2 •ROI 1 Year TCO of 5 years D.G 1+1 (No Main Power Available) **Price (USD)** Quantity ep cycle battery (DCB 600AH) 1 10000 48276 ttery cabinet (Mini-shelter DC Air-3600 1 32184 n) 16092 25113 wer Rectifier (TP48200A) 5000 1 **STIDE** U (Single Analysis Unit) 2400 CAPEX TCO1 TCO2 TCO3 tal Price 21000

18882

TCO4

49594

20600

54426

TCO4

TCO4

66731

10200

10200

24168

20600

34670